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A mathematical model for blade coating of a nematic liquid crystal
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Department of Mathematics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow, G1 1XH,
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(Received 5 July 2006; in final form 15 December 2006; accepted 15 December 2006 )

The standard industrial process of blade-coating is now being used to produce new liquid
crystal displays (LCDs) in which a liquid crystal and optical layers are coated onto a
substrate. Motivated by this new LCD manufacturing process, we use the Ericksen–Leslie
equations to develop a simple mathematical model for blade coating of a nematic liquid
crystal. The direction and uniformity of the director are important factors for the
performance of the displays, particularly when this alignment is ‘frozen in’ within optical
layers. For this reason we investigate the flow and director within a liquid crystal film both
after emerging from the region under a blade (the so-called ‘drag-out’ problem) and before
entering the region under a blade (the so-called ‘drag-in’ problem). We restrict our attention
to thin films and small director angles, and we study two particular cases in which either
orientational elasticity effects or flow effects dominate the alignment of the liquid crystal. We
find that there is a unique solution of the drag-out problem, whereas there may be multiple
solutions of the drag-in problem. When orientational elasticity effects dominate we obtain a
simple analytical solution for the director. When flow effects dominate we find that the
director is uniform in the bulk of the liquid crystal, which exhibits thin orientational
boundary layers near the substrate and the free surface, within which the director orientation
changes rapidly from its prescribed boundary value to the flow alignment angle. These
boundary layers may be potential locations for the nucleation of defects.

1. Introduction

Liquid crystal displays (LCDs) are used in a wide range

of applications from flat-screen televisions and laptop

computers to mobile telephones and pocket calculators

because they are thin, light and have a low power

consumption. LCD technology exploits a simple elec-

tro-optical effect and is now well understood. However,

the constraints imposed by using glass substrates mean

that standard manufacturing techniques cannot be used

for novel applications in which the display needs to be

curved or deformable. Moreover, the current manufac-

turing process of LCDs, involving batch processing of

sheets of glass, means that only rectangular displays can

be produced in a cost effective way [1]. At present the

liquid crystal is usually introduced between the two

glass substrates using capillary action and/or under an

applied pressure difference. A ‘one-drop-fill’ method

can also be used in which a prescribed amount of liquid

crystal material is dropped onto one substrate and then

a second substrate is overlaid under vacuum.

An alternative manufacturing process has been

discussed for a number of years, but has only recently

been implemented [2]. In this process the liquid crystal is

coated onto a plastic substrate (usually treated with

appropriate barrier layers to prevent the passage of

water and oxygen) using a blade-coating technique.

This coating technique is relatively standard in other

areas of technology [3], but has only recently been used

to produce LCDs. The liquid crystal material may also

contain a small amount of polymer-inducing material

which when cured (by means of UV light) will crosslink

to form a polymer matrix. If, at the same time (i.e. while

the polymerization process takes place) a phase separa-

tion occurs (aided by localized UV illumination), then

the polymer matrix can form a second (upper) substrate

which encapsulates the liquid crystal material to form

the finished display. Optical layers such as polarizers

and colour filters could also then be applied using the

same method. In contrast to batch processing techni-

ques which are hampered by the need to handle, process

and transport large sheets of glass, this process has the

considerable advantage that it can be performed by roll-

to-roll printing, which will reduce manufacturing time,

increase throughput, and thereby reduce manufacturing

costs. There are at present a number of technological

hurdles to overcome in order to utilize fully these roll-

to-roll techniques (e.g. the ability to produce printable*Corresponding author. Email: nigel.mottram@strath.ac.uk
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TFTs or organic electronics). However, the initial cost

of setting up a roll-to-roll production facility for LCDs

is estimated to be around $100 million, which is much

less than a comparable (generation-7) LCD plant [1].

The main driver behind the interest in using roll-to-roll

printing to manufacture LCDs may therefore be

economic considerations, but developing this process

will also enable the production of truly flexible displays

which have been predicted for a number of years and

could revolutionize the display industry. This new

manufacturing process using roll-to-roll printing may

also be used to produce other kinds of displays in the

future, such as organic light emitting diodes, which are

currently manufactured using glass substrates, but

which are believed by many to be the ‘natural’ choice

for a flexible display [1].

During the coating process the liquid crystal is

usually deposited while it is in an isotropic phase, that

is, when the orientational order of the liquid crystal is

zero. However, coating in the isotropic phase may be

difficult to achieve because substrates can induce a

significant amount of ordering in the system, or may be

disadvantageous compared with coating in the ordered

phase. If an ordered phase is induced, either by the

underlying substrate or by the blade coating process,

then unwanted misalignment and possibly even defects

may be induced in the system.

For these reasons, in this exploratory study we will

consider the flow and alignment during blade-coating of

a nematic liquid crystal onto a planar substrate. In

previous work [4] we described the flow and alignment

of a liquid crystal in the region under a blade; here we

describe the flow and alignment of a liquid crystal film

after emerging from the region under a blade (the so-

called ‘drag-out’ problem) and before entering the

region under a blade (the so-called ‘drag-in’ problem),

as shown in figure 1. In this work we will use analytical

and numerical techniques to analyse the Ericksen–Leslie

equations [5–7] governing the fluid velocity and pressure

and the director, in cases when both the aspect ratio of

the film of liquid crystal and the director angle are

small.

2. Governing equations

We consider a thin film of liquid crystal of constant

density r and constant surface tension coefficient c
flowing with a free surface z5h(x) on a horizontal

planar substrate z50. The substrate moves with

constant velocity U (.0) in the positive x direction

away from (or towards) a fixed blade with lower surface

z5b(x) which lies between x50 and x5L (see figure 1).

When the substrate moves away from the blade [the so-

called ‘drag-out’ problem shown in figure 1 (a)] we

assume that there is a reservoir of liquid crystal of

prescribed depth R upstream of the blade (i.e. in x,0),

and when the substrate moves towards the blade [the so-

called ‘drag-in’ problem shown in figure 1 (b)] we

assume that there is a similar reservoir downstream of

the blade (i.e. in x.L). Gravity acts in the negative z

direction. We assume that a steady state has been

reached, that the dependent variables (velocity, mod-

ified pressure and director) have no y dependence, and

that the director remains in the xz-plane. These

assumptions have been shown to be valid for many

common liquid crystals and for moderate flow rates [7].

The velocity v, modified pressure ~p and director n can

therefore be written as

v~ u x, zð Þ, 0, w x, zð Þð Þ, ~p~~p x, zð Þ,

n~ cos h x, zð Þ, 0, sin h x, zð Þð Þ:
ð1Þ

The standard redefinition of pressure p used when

studying the Ericksen–Leslie equations has been

employed so that the modified pressure ~p includes a

term dependent on orientational elasticity, i.e.
~p~pzW , where W5W(x, z) is the elastic energy per

Figure 1. Geometry of the mathematical model for blade coating of a nematic liquid crystal for (a) drag out and (b) drag in.
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unit volume given by

2W~K1 +:nð Þ2zK2 n:+|nð Þ2zK3 n:+ð Þn½ �2

z K2zK4ð Þ+: n:+ð Þn{ +:nð Þn½ �;
ð2Þ

where Ki for i51, 2, 3, 4 are the elastic constants.

We adopt the following non-dimensionalization:

x~Lx�, z~Hz�, h~Hh�,

b~Hb�, R~HR�, ai~g1a�i ,

Ki~K1K�i , u~Uu�, w~
HU

L
w�,

~p{pa~
g1UL

H2
~p�, Q~UHQ�;

ð3Þ

in which we use the typical film thickness H5(b0+bL)/2,

where b05b(0) and bL5b(L) denote the heights of the

blade at x50 and x5L, respectively; g15(a4+a3+a6)/2,

where ai for i51, 2, …, 6 are the Leslie viscosities [6], is

one of the Miesowicz viscosities [8], pa is the constant

atmospheric pressure, and Q (.0) is the constant

volume flux of fluid per unit width, defined by

Q~

Z h

0

u dz: ð4Þ

The standard continuum equations for the behaviour

of nematic liquid crystals are the Ericksen–Leslie

equations [5–7] which have frequently been shown to

model such systems accurately. These equations are

nonlinear partial differential equations and consist of a

mass conservation equation and balance laws of linear

and angular momentum. In order to make analytical

progress we will employ certain simplifying assump-

tions.

Using the standard thin-film approximation [9] based

on the assumption that the liquid crystal film is thin, i.e.

that H is much smaller than L, so that the aspect ratio e

of the film, defined by e5H/L, is small, the governing

equations can be greatly simplified. This assumption is

well justified in many practical coating situations in

which a typical liquid crystal film would be of thickness

H51025 m with a typical blade of length L51022 m or

larger, giving e51023 or smaller.

The appropriate thin-film versions of the Ericksen–

Leslie equations are

0~
Lu�

Lx�
z

Lw�

Lz�
, ð5Þ

0~
L ~p�

Lx�
{

L
Lz�

g hð Þ Lu�

Lz�

� �
zO eð Þ, ð6Þ

0~
L ~p�

Lz�
zGzO eð Þ, ð7Þ

0~E m hð Þ Lu�

Lz�
{ f hð Þ L2h

Lz�2
z

1

2

df hð Þ
dh

Lh

Lz�

� �2
" #

zO eð Þ; ð8Þ

where

g hð Þ~cos2 hzg�2 sin2 hza�1 cos2 h sin2 h; ð9Þ

f hð Þ~cos2 hzK�3 sin2 h; ð10Þ

m hð Þ~a�3 cos2 h{a�2 sin2 h; ð11Þ

in which g�2~g2=g1, where g25(a4+a5–a2)/2 is another of

the Miesowicz viscosities [8]. The non-dimensional

gravity parameter in equation (7),

G~
rgH3

g1UL
; ð12Þ

is a measure of the relative strength of gravitational and

viscous effects, and the non-dimensional Ericksen

number in equation (8),

E~
g1UH

K1
; ð13Þ

is a measure of the relative strengths of viscous and

elastic effects.

We assume that the free surface is pinned at the

downstream end of the blade in the drag-out problem

and at the upstream end of the blade in the drag-in

problem. At the substrate z*50 we assume that the

director lies parallel to the substrate in the x direction

(homogeneous anchoring) and that the fluid velocity is

equal to the velocity of the substrate (no slip and no

penetration). At the free surface z*5h*(x*) we assume

that the usual normal and tangential stress balances

hold, and that the director lies parallel to the free

surface, as is thought to occur at the free surface of

certain nematic liquid crystals. For example, for PAA in

the absence of a magnetic field the director lies parallel

to the free surface [10–12]. More generally, recent

studies show that the orientation at a free surface may

depend not only on the particular liquid crystal but also

on the speed of the cooling process from the isotropic to

the nematic phase [13]. Note that we could alternatively

have assumed that the director lies perpendicular to

both the substrate and the free surface (homeotropic

A mathematical model for blade coating 623
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anchoring); in that case the following analysis would

follow with minor modifications. The appropriately

non-dimensionalized boundary conditions are therefore

h�~b�1 at x�~1 for drag outð Þ; ð14Þ

h�~b�0 at x�~0 for drag inð Þ; ð15Þ

L ~p�

Lx�
?0 as x�?? for drag outð Þ

or x�?{? for drag inð Þ;
ð16Þ

u�~1, w�~0, h~0 on z�~0; ð17Þ

Lu�

Lz�
~0, ~p�~{S

d2h�

dx�2 , h~e
dh�

dx�
on z�~h�, ð18Þ

where b�0~b� 0ð Þ and b�1~b� 1ð Þ denote the heights of

the blade at x*50 and x*51, respectively, and the

non-dimensional surface-tension parameter in equa-

tion (18),

S~
cH3

g1UL3
; ð19Þ

is a measure of the relative strength of surface tension

and viscous effects. Furthermore, we impose continuity

of flux and pressure between the flow under the blade

and the flow under the free surface, and continuity of

pressure between the flow under the blade and in the

reservoir (in which the pressure is assumed to be

hydrostatic).

In both the drag-out and drag-in problems the

constant flux Q* is fixed by the conditions far upstream

of the blade (i.e. as x*R2‘). In the drag-out problem

the depth of the reservoir R* (which can be prescribed a

priori) determines Q*. In the drag-in problem the

uniform thickness of the film far upstream, which is

equal to Q* (or equivalently in dimensional terms the

thickness of the film far upstream, denoted by H‘, equal

to Q/U), can also be prescribed a priori.

For a ‘flow-aligning’ material (i.e. one with a2a3.0

[7]) the flow-alignment angle h0, which is defined by

h0~tan{1 a3=a2ð Þ
1
2 and is the angle at which the director

would orient to the streamlines in the absence of any

elastic or external effects, is usually small. To make

analytical progress we restrict our attention to small

director angles; in other words, writing h as h5dh* with

h*5O(1), we assume that d%1. This is a reasonable

assumption because the free surface will be relatively

flat (because of the thin-film assumption) and hence the

boundary conditions cause only a relatively small

director orientation, and the flow induced orientation

is small because of the small flow-alignment angle.

Hence, at this point we have three small parameters to

consider, namely e, d and h0; the possible orderings of

these parameters result in different sets of equations and

boundary conditions. In this paper we will discuss two

particular orderings, denoted as Cases 1 and 2. The

other possible orderings of the small parameters e, d and

h0 are not considered, either because they are not

physically realizable, or because they are not tractable

analytically (see [4] for further details).

Henceforth we will drop the superscript star from the

non-dimensional and scaled variables and consider only

non-dimensional and scaled variables unless stated

otherwise. In particular, the material constants that

appear subsequently are non-dimensionalized according

to equation (3) unless stated otherwise.

2.1. Case 1: e,d%h0%1

In this case orientational elasticity effects dominate

over flow effects which are not sufficiently strong

either to achieve flow alignment, or to increase h
significantly from its prescribed value at the boundary.

In this case with d5e the governing equations (5)–(8)

simplify to

0~uxzwz, 0~ ~px {uzz,

0~ ~pz zG, hzz~{Eeuz, 20 a-dð Þ

where we have introduced the appropriate Ericksen

number

Ee~{
a3E

e
: ð21Þ

Note that the leading order equations for u and ~p are

independent of h and that, since e5d, the leading order

boundary condition on h at z5h is h5hx.

2.2. Case 2: e%d,h0%1

In this case orientational elasticity effects are dominated

by flow effects which are sufficiently strong to increase h

significantly from its prescribed value at the boundary

and to achieve flow alignment in part of the film. In this

case with d5h0 the governing equations (5)–(8) simplify

to

0~uxzwz, 0~ ~px {uzz,

0~ ~pz zG, hzz~{Eh0
1{h2
� �

uz ; 22 a-dð Þ

where we have introduced the appropriate Ericksen

number

Eh0
~{

a3E

h0
: ð23Þ

624 J. Quintans Carou et al.
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Note again that the leading order equations for u and ~p

are independent of h and that, since e%d, the leading

order boundary condition on h at z5h is simply h50.

3. Solutions

The leading order equations for the velocity, pressure

and director are the same for both the drag-out and the
drag-in problems. Moreover, from equations (20 a–c)

and (22 a–c) it is evident that the leading order

equations for the fluid velocity and pressure (but not

the director) are the same in Cases 1 and 2, and are

decoupled from that for the director. Hence for both

problems and in both cases we can calculate u, w and ~p

directly from either equations (20 a–c) or (22 a–c) with

boundary conditions (17) and (18) to be

u x, zð Þ~1{
~px

2
2h{zð Þz; ð24Þ

w x, zð Þ~
~pxx

6
3h{zð Þz2z

~px

2
hxz2; ð25Þ

~p x, zð Þ~G h{zð Þ{Shxx: ð26Þ

From equations (4) and (24) we have

Q~h{
~px

3
h3; ð27Þ

and hence the solution for u may be re-written in the

form

u~1z
3 Q{hð Þ 2h{zð Þz

2h3
; ð28Þ

so that the curve z5z0 on which u50 is given by

z0

h
~1{

3Q{h

3 Q{hð Þ

� �1=2

: ð29Þ

Hence, if h.3Q then there is reverse flow (i.e. u,0)

when z0,z,h. We can also see from equation (28) that

uz50 not only at the free surface z5h, but also when

h5Q, which will be important in the next two

subsections in which we study the director orientation

in response to the fluid flow in Cases 1 and 2.

Substituting the solution (26) for ~p into (27) leads to

the governing ordinary differential equation for the free
surface profile h, namely

Shxxx{Ghx~
3 Q{hð Þ

h3
: ð30Þ

In order to impose continuity of pressure between the

flow under the blade, the flow under the free surface,

and the hydrostatic pressure in the reservoir given by

~p~G R{zð Þ; ð31Þ

we need to know the pressure under the blade. The

solution under the blade was analysed in detail in [4], in

which it was shown that, under the same approxima-
tions as in the present paper, the pressure under the

blade is given by the classical Newtonian solution

~p~ ~p0 {Gzz6I2 xð Þ{12QI3 xð Þ; ð32Þ

where ~p0~~p 0, 0ð Þ is an undetermined constant and we

have introduced the functions In5In(x) defined by

In~

Z x

0

1

bn ~xð Þ d
~x: ð33Þ

In the drag-out problem, imposing continuity of

pressure at x50 yields

~p0 ~GR, ð34Þ

and imposing continuity of pressure at x51 yields

Shxx 1ð Þ~G b1{Rð Þ{6I2 1ð Þz12QI3 1ð Þ: ð35Þ

Hence, for the drag-out problem the appropriate

boundary conditions for equation (30) are (14), (16 a)

and (35). For a given value of R, this system will have a
solution for only one particular value of Q. In practice,

it is convenient (and admissible) to replace (35) by

h?Q as x??; ð36Þ

with Q prescribed a priori, and then R can be

determined as part of the solution if required.

In the drag-in problem, imposing continuity of

pressure at x50 yields

~p0 ~Gb0{Shxx 0ð Þ; ð37Þ

and imposing continuity of pressure at x51 yields

Shxx 0ð Þ~G b0{Rð Þz6I2 1ð Þ{12QI3 1ð Þ: ð38Þ

Hence, for the drag-in problem the appropriate

boundary conditions for equation (30) are (15), (16 b)

and (38), where both R and Q are prescribed a priori.

The free surface profile was calculated numerically by

solving equation (30) subject to the appropriate boundary

A mathematical model for blade coating 625
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conditions using AUTO [14], a FORTRAN-based soft-

ware package used to investigate bifurcation problems

involving ordinary differential equations. The numerical

results will be discussed in detail in the next two sections

for the drag-out and the drag-in problem.

We can analyse the asymptotic behaviour of the free

surface far downstream in the drag-out problem and far

upstream in the drag-in problem. In these two limits we may

linearize equation (30) about the uniform solution h5Q by

writing h~Qzĥh with jĥhj%1 to find that ĥh~ĥh xð Þ satisfies

S ĥhxxx {G ĥhx z
3

Q3
ĥh~0: ð39Þ

In general, the solutions of equation (39) are of the form

ĥh~exp l G=3Sð Þ
1
2x

h i
, where l satisfies

l l2{3
� �

z2
ffiffiffiffi
C
p

~0; ð40Þ

in which the parameter C (.0) is defined by

C~
243S

4G3Q6
: ð41Þ

The roots of equation (40) determine the nature of the three

solutions of (39), monotonic if Im (l)50, oscillatory if

Im (l)?0, and growing or decaying depending on the sign

of Re (l). The number of real and complex roots of (40)

depends on the size of C. Specifically, if C(1 then (40) has

one real negative root and two real positive roots, whereas if

C.1 then (40) has one real negative root and two complex

roots with positive real part.

In the limit xR‘, two of the monotonic solutions of

equation (39) for C(1 and the oscillatory solutions of

(39) for C.1 are unbounded (and so must be rejected),

and hence the appropriate solution of (39) is monotonic,

and its decay towards the uniform solution is given by

h*QzA1 exp l1
G

3S

� �1
2

x

" #
; ð42Þ

as xR‘, where A1 is an undetermined constant and l1 is

the unique negative real root of (40).

In the limit xR2‘, if C(1 then equation (39) has

three monotonic solutions, but one of them is

unbounded and, of the two bounded solutions, one is

dominated by the other, and hence the appropriate

solution of (39) is monotonic, and its decay towards the

uniform solution is given by

h*

QzA2 exp l2
G

3S

� �1
2

x

" #
when Cv1,

QzA2x exp l2
G

3S

� �1
2

x

" #
when C~1;

8>>>>><
>>>>>:

ð43Þ

as xR2‘, where A2 is an undetermined constant and l2

is the smaller of the two positive real roots of (40). On

the other hand, if C.1 then the monotonic solution of

equation (39) is unbounded and hence the appropriate

solution of (39) is oscillatory, and its decay towards the

uniform solution is given by

h*Qz A3 cos l4
G

3S

� �1
2

x

" #
zA4 sin l4

G

3S

� �1
2

x

" #( )

|exp l3
G

3S

� �1
2

x

" #
;

ð44Þ

as xR2‘, where A3 and A4 are undetermined constants

and l3¡il4 are the complex roots of (40) (with positive

real part l3). In dimensional terms the condition C.1

reads

cg2
1U2

r3g3H6
?

w

4

243
; ð45Þ

and hence if the substrate speed U is sufficiently large

then the decay of the free surface far upstream of

the blade is oscillatory. With typical material para-

meter values (c53.861022 N m21, r51168 kg m23,

g59.8 m s22, g152.461023 Pa s, K156.9610212 N,

a2526.961023 Pa s, a352261024 Pa s [7]) and

H‘51025 m the condition (45) gives U.Uc1, where

Uc1^3:4|10{7 m s{1, meaning that (since a typical

substrate speed in a standard blade-coating process is

U50.05–1 m s21 [3]) in practice the decay far upstream

will be oscillatory.

3.1. Case 1: e,d%h0%1

In this case orientational elasticity effects dominate over

flow effects and we expect the flow to have only a weak

effect on the director. Substituting the solution (28) for

u into the angular momentum balance (20 d), integrat-

ing twice and applying boundary conditions (17) and

(18) leads to the solution for h, namely

h~
hx

h
zzEe

Q{hð Þ h{zð Þ 2h{zð Þz
2h3

: ð46Þ

The solution (46) shows that the flow changes the

director profile from a linear profile due to purely

elastic effects when Ee50 to a cubic profile when Ee?0,

and that as flow effects become more important (i.e. as

the Ericksen number increases) the director is distorted

further away from the linear profile.

3.2. Case 2: e%d,h0%1

In this case the angular momentum balance (22 d) must,

in general, be solved numerically for h. However, when
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the Ericksen number is large, i.e. when Eh0
&1, flow

effects dominate over orientational elasticity effects and

the solution for h in the bulk is simply h51 (equivalent

to the unscaled flow-alignment angle h0) when uz.0 and

h521 (equivalent to the unscaled flow-alignment angle

2h0) when uz,0, with two thin orientational boundary

layers within which h changes rapidly to its prescribed

boundary values, one near the substrate z50 and the

other near the free surface z5h. The solution for the

director within these thin orientational boundary layers

is found by applying standard boundary-layer analysis

[15] and following the approach used in our previous

work [4].

To analyse the orientational boundary layer near the

substrate z50, which is of thickness d0 (%h), where

d0~
h

3 h{Qj jEh0
ð Þ1=2

; ð47Þ

we introduce the inner variables Z and H5H(Z) defined

by

Z~
z

d0
, H Zð Þ~sgn h{Qð Þh x, zð Þ: ð48Þ

At leading order H satisfies

HZZ~1{H2; ð49Þ

subject to H(0)50 and HR21 as ZR‘, with the

appropriate solution

H~2{3 tanh2 Zffiffiffi
2
p ztanh{1

ffiffiffi
2

3

r !
: ð50Þ

Similarly, to analyse the orientational boundary layer

near the free surface z5h, which is of thickness dh (%h),

where

dh~
h

3 h{Qj jEh0
ð Þ1=3

; ð51Þ

we introduce the inner variables f and w5w(f) defined

by

f~
h{z

dh

, w fð Þ~sgn h{Qð Þh x, zð Þ: ð52Þ

At leading order w satisfies

wff~fð1{w2Þ ð53Þ

subject to w(0)50 and wR21 as fR‘. In [4] a

trivially re-scaled version of equation (53) was solved

numerically to yield a monotonically decreasing solu-

tion for w.

An appropriate composite uniformly valid leading-

order asymptotic solution for h is therefore

h*sgn h{Qð Þ 3 sec h2 3 h{Qj jEh0

2

� �1=2
z

h
zb

" #(

zw 3 h{Qj jEh0
ð Þ1=3h{z

h

� ��
,

ð54Þ

where b~ tanh{1
ffiffiffiffiffiffiffiffi
2=3

p
.

In equation (50), and thereby (54), a choice of signs

has been made to rule out higher energy solutions;

details of a similar choice are given in [4].

Note that, since Eh0
&1, both orientational boundary

layers are thin provided that h is not too close to Q, and

hence the present boundary-layer analysis fails both

near any value of x at which h5Q and as |x|R‘. In

particular, if h5Q at x5x0, say, then the boundary

layers grow to fill the film when x{x0j j~OðE{1
h0
Þ,

while, since h,Q according to equation (42) as xR‘ for

drag out and according to (43) or (44) as xR2‘ for

drag in, the boundary layers always grow to fill the film

when xj j~O log Eh0
ð Þ. A detailed analysis of the regions

near x5x0 is an interesting topic for further work.

In the next two sections we present specific details of

the velocity and the director in the drag-out and the

drag-in problems.

4. Drag-out problem

In this section we consider the drag-out problem, in which

the substrate z50 moves away from the fixed blade, see

figure 1 (a). We calculate the free surface profile numeri-

cally by solving equation (30) subject to the boundary

conditions (14), (16a) and (36). In this case we find that

there is a unique solution. Furthermore, we find that if

Q,b1 (Q.b1) then the free surface profile decreases

(increases) monotonically from its prescribed value h5b1

at x51 to h5Q,b1 (h5Q.b1) as xR‘.

Figure 2 shows the velocity vectors in the particular

case of a uniform blade b;1, when S5G51 and

Q50.25. In this case there is a region of reverse flow

above the curve z5z0 on which u50 (indicated with a

full line) when h.3Q50.75.

The director in Case 1, given by equation (46), is

shown in figure 3 in the particular case of a uniform

blade b;1, when S5G51 and Q50.25 for (a) Ee51 and

(b) Ee510. In general, for values of Ee lying in the

interval 0,Ee,Eec, where the critical value Eec is given

by

Eec~ min
xw1

2hx

Q{h

� �
, ð55Þ

so that in this case Eec^6:48, the director profile is
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monotonic, see figure 3 (a) whereas for values of Ee

satisfying Ee.Eec the flow causes the director to develop

a minimum if Q,b1, see figure 3 (b), or a maximum if

Q.b1 (not shown for brevity) within the film.

The director in Case 2, given by equation (54), is

shown in figure 4 in the particular case of a uniform

blade b;1, when S5G51 and Q50.25 for Eh0
~104,

and clearly shows the orientational boundary layers

near the substrate and the free surface. Note that in the

drag-out problem the shear never changes sign; thus

h521 (h51) everywhere in the bulk if Q,b1 (Q.b1).

5. Drag-in problem

In this section we consider the drag-in problem, in

which the substrate z50 moves towards the fixed blade,

see figure 1 (b). The free surface again satisfies equa-

tion (30), which must now be solved subject to the

boundary conditions (15), (16b) and (38). In this case we

find that there may be multiple (steady) solutions

depending on the relative sizes of S, G and Q. In

figure 5 we present a typical GQ-parameter plane

showing the number of solutions in the different regions

when S51 in the particular case of a uniform blade b;1

and a reservoir of depth R52. In particular, figure 5

shows that when G50 there is a unique solution for

values of Q lying in the interval 0,Q,Qc1(0), where

Qc1 0ð Þ^0:500, there are two solutions for values of Q

lying in the interval Qc1(0),Q,Qc2(0), where

Qc2 0ð Þ^0:651, and there is no solution for values of

Q satisfying Q.Qc2(0). As figure 5 also shows, when

G?0 there are two possibilities. On one hand, if

0,G,Gc, where Gc^0:215, then there are either one

or three solutions, depending on the value of Q;

specifically, there is a unique solution for values of Q

lying in the interval 0,Q,Qc1(G), there are three

solutions for values of Q lying in the interval

Qc1(G),Q,Qc2(G), and there is again a unique solution

for values of Q satisfying Q.Qc2(G). On the other hand,

if G.Gc then there is a unique solution for all

values of Q. Note that, as figure 5 shows,

Qc1 Gcð Þ~Qc2 Gcð Þ^0:647.

In order to determine which of these solutions might

occur in practice we would need to study their energy

and/or stability to small perturbations. This analysis is

not pursued here but is the subject of ongoing work and

will be discussed in a subsequent publication; however it

might be expected on physical grounds that when three

solutions occur, two of them are stable.

In figures 6, 7 and 8 we show the velocity vectors and

the director in Cases 1 and 2, respectively, in the

particular case of a uniform blade b;1 and a reservoir

of depth R52, when S51, G50.2 and Q50.64,

parameter values for which there are three solutions

and the decay of the free surface far from the blade is

oscillatory. Specifically, figure 6 shows that there is a

region of reverse flow above the curve z5z0 on which

u50 [indicated with a full line in figures 6 (b) and 6 (c)]

Figure 3. The director in the drag-out problem in Case 1 when b;1, S5G51 and Q50.25 for (a) Ee51 and (b) Ee510. The curve
on which hz50 is indicated with a dashed line (for a minimum).

Figure 2. The velocity vectors in the drag-out problem when
b;1, S5G51 and Q50.25. Reverse flow occurs above the
curve z5z0 on which u50 (indicated with a full line) when
h.3Q50.75.
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when h.3Q51.92. Furthermore, there is a change in

the sign of the shear when h passes through Q. Figure 7

shows the director in Case 1 for Ee55 whose profile

develops a zero, a maximum (indicated with a full line),

and a minimum (indicated with a dashed line) within the

film. Figure 8 shows the director in Case 2 for Eh0
~104;

in particular, it shows the orientational boundary layers

near the substrate and the free surface. Figure 8 also

shows how the director changes its orientation in the

bulk from h5+1 to h521 according to the sign of the

shear.

Figure 9 shows the director in Case 1 in the particular

case of a uniform blade b;1 and a reservoir of depth

R52, when S51, G510 and Q50.7 for Ee55,

parameter values for which there is a unique solution

and the decay of the free surface far from the blade is

monotonic. In this case the director profile develops a

zero and a minimum (indicated with a dashed line)

within the film. For these parameter values the director

in Case 2 (not shown for brevity) is similar to that

shown in figure 8 (c) with h521 in the bulk and

orientational boundary layers near the substrate and

the free surface.

6. Conclusions

Using the Ericksen–Leslie equations we have analysed

the flow and alignment of a thin film of a nematic liquid

crystal during a blade-coating process, both after

emerging from the region under a blade (drag out)

and before entering the region under a blade (drag in).

Analytical and numerical progress was made in the case

when the liquid crystal film is thin and the director angle

is small. In particular, analytical solutions for the fluid

velocity and pressure and the director in Case 1 were

found; the solution for the director in Case 2 requires

the numerical solution of a parameter-free system.

In the drag-out problem we found that there is a

unique solution and that the decay of the free surface

Figure 5. GQ-parameter plane showing the number of solu-
tions in the different regions when b;1, R52 and S51. The
crosses indicate numerically calculated points on the boundary
curves Q5Qc1(G) and Q5Qc2(G).

Figure 6. The velocity vectors in the drag-in problem when
b;1, R52, S51, G50.1 and Q50.64, parameter values for
which there are three solutions and the decay of the free
surface far from the blade is oscillatory. Reverse flow occurs
above the curve z5z0 on which u50 [indicated with a full line
in (b) and (c)] when h.3Q51.92.

Figure 4. The director in the drag-out problem in Case 2
when b;1, S5G51 and Q50.25 for Eh0

~104.
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towards its uniform solution far from the blade is

monotonic; furthermore, numerical results suggested

that the free surface is monotonic for all x. When elastic

effects dominate, the director is monotonic for values of

Ee smaller than the critical value Eec given by

equation (55), and otherwise the director develops a

minimum (if Q,b1) or a maximum (if Q.b1) within the

film. When flow effects dominate, the director aligns at

an angle 2h0 (if Q,b1) or h0 (if Q.b1) in the bulk, with

thin orientational boundary layers near the substrate

and the free surface.

In the drag-in problem we found that there may be one,

two or three solutions and that the decay of the free

surface towards its uniform solution far from the blade

can be either monotonic or oscillatory depending on the

relative sizes of S, G and Q. In particular, as figure 5

shows, when b;1, R52 and S51 there is a unique

solution for all values of Q when GwGc^0:215, and a

unique solution for all values of G when

QwQc2 0ð Þ^0:651. With typical material parameter

values, H51025 m and L5(c/g1U)1/3H the condi-

tions G.Gc and Q.Qc2(0) give U,Uc2 and H‘.H‘c,

respectively, where Uc2^2:6|10{5 m s{1 and

H?c^6:5|10{6 m, meaning that multiple solutions

could well occur in practice. When elastic effects

dominate, the film always contains regions where the

director is non-monotonic. When flow effects dominate,

the director changes its orientation from 2h0 to h0 (or vice

Figure 7. The director in the drag-in problem in Case 1 when
b;1, R52, S51, G50.1 and Q50.64 for Ee55, parameter
values for which there are three solutions and the decay of the
free surface far from the blade is oscillatory. The curve on
which hz50 is indicated with a full line (for a maximum) or a
dashed line (for a minimum).

Figure 8. The director in the drag-in problem in Case 2 when
b;1, R52, S51, G50.1 and Q50.64 for Eh0

~104, parameter
values for which there are three solutions and the decay of the
free surface far from the blade is oscillatory.

Figure 9. The director in the drag-in problem in Case 1 when
b;1, R52, S51, G510 and Q50.7 for Ee55, parameter values
for which there is a unique solution and the decay of the free
surface far from the blade is monotonic. The curve on which
hz50 is indicated with a dashed line (for a minimum).
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versa) in the bulk when h5Q, with thin orientational

boundary layers near the substrate and the free surface.

In both the drag-in and drag-out problems it may in

practice be desirable to minimize the distortion of the

director as much as possible to ensure a homogeneous

orientation of the liquid crystal. Where large distortions

of the director occur it may be possible for defects in the
orientation to nucleate. This would be particularly likely

to occur close to the substrate where any imperfection or

impurity in the substrate may trigger such a nucleation

process if the director is highly distorted. From the

present results we see that there is significant director

distortion within the liquid crystal film in Case 1 when

the Ericksen number Ee is relatively large. This distortion

could be avoided in the drag-out problem by keeping Ee

smaller than Eec. Typically Ee is large, meaning that this

distortion is likely to occur in practice. However, since

this distortion appears within the film and not near the

substrate, the likelihood of defect nucleation may not be

as high as it might appear. Of more importance is the

relatively large director distortion that appears close to

the substrate in Case 2 when Eh0
is large. Typically Eh0

is

large, meaning that this distortion is also likely to occur
in practice. In the drag-out problem (in which the shear

never changes sign) this distortion could be avoided if the

pretilt director value at the substrate is taken to be 2h0 (if

Q,b1) or h0 (if Q.b1), and thus the risk of the

appearance of defects minimized. However, if this pretilt

value is difficult to achieve in real applications, then the

relatively slow speeds needed to avoid large gradients in

the director mean that they are likely to occur in practice.
The regions near to where h5Q, in which the boundary

layers grow to fill the film, could also be potential

locations for the nucleation of defects. All of these

findings suggest that coating in the isotropic phase is

preferable to coating in the nematic phase. However, for

optical elements where a high degree of ordering is

needed it may be preferable to utilize the increase in order

parameter due to flow alignment. This possibility
suggests that the situation in Case 2 may provide an

advantage if the orientational order is ‘frozen in’ soon

after the fluid emerges from under the blade.

Finally, we note that throughout this paper we

assumed that a2,0 (as it is for calamitic liquid crystals)

and a3,0, so that the material is flow-aligning, i.e.

h0~tan{1 a3=a2ð Þ
1
2 is defined. If a2,0 and a3.0 then the

liquid crystal is non-flow-aligning, i.e. h0 is not defined;

in such a case, if the director remains in the plane of

shear, the present analysis follows through with only

minor differences. Furthermore, the present analysis is

also relevant to discotic liquid crystals (i.e. liquid

crystals whose constituent molecules are disc-like rather

than rod-like) for which a3.0 [16]. A more detailed

discussion of the relevance of the present analysis to

non-flow-aligning calamitics and flow-aligning and

non-flow-aligning discotics can be found in [4].
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